

Syllabus of the course

"Software engineering"

Speciality.	121 Software engineering	
Educational programme	Software engineering	
Educational level	First (bachelor's) level of higher education	
Status of the discipline	Mandatory	
Language of instruction	Ukrainian	
Course/semester	3rd year 7th semester	
Number of ECTS credits	5	
Distribution of hours by forms	Lectures - 16 hours.	
of educational process and	Laboratories - 32 hours.	
types of classes	Independent work - 102 hours.	
Form of semester control	Examination	
Department	Information Systems, 9a, Nauky Ave. 9a, Kharkiv, 61166, Ukraine,	
_	Tel. +38(057)702-18-31, E-mail: kafis@hneu.edu.ua	
Teacher(s)	Irina Zolotareva, Professor, PhD in Economics	
Contact information	<u>i ryna.zolotaryova@hneu.net</u>	
teacher(s)		
Training days	Lectures: according to the current class schedule	
	Laboratory: according to the current class schedule	
Consultations	At the Department of Information Systems, in accordance with the	
	schedule of consultations, individual, chat in the PNS	

The aim of the discipline is to provide students with practical skills in analysing and modelling a problem area, developing the ability to work with software requirements: identifying, analysing, specifying, verifying requirements; designing architecture, composition of components, interfaces and other software characteristics, managing the software development process.

Prerequisites for the course Structural and logical scheme of studying the discipline			
Algorithms and data structures	Course project: Software engineering		
Object-oriented programming	IT project management		
System and business analysis in the IT industry	Software quality and testing		
	Designing the interface of software systems		
	Diploma project		

Content of the discipline

Topic 1: Software life cycle models. Documentation of an automated software system. Vision & Scope, SRS, User Stories.

Topic 2. Software Requirements as a field of knowledge in software engineering. Requirements management and connection with SWEBOK tasks.

Topic 3: Features of defining and analysing business requirements. Determination of requirements as a stage of software development. Problems of managing the process of developing software requirements.

Topic 4. Object-oriented approach to software design. UML language.

Topic 5. The process of requirements analysis. Diagram of UML use cases.

Topic 6. Methods of object analysis and modelling. Advanced requirements analysis. UML activity diagram.

Topic 7. Managing changes to software requirements. The main tasks of requirements management. Tracing requirements.

Topic 8: The software design stage. Topic 9: System architecture design Topic 10. Software developers. Wo	UML state diagram. 1. UML class diagram. rk in a team.
Material and techni	cal (software) support of the discipline
Draw.io, lucio	dchart, Visual Paradigm, services
	for UML diagrams
Course page on the Moodle platform (personal learning system)	https://pns.hneu.edu.ua/course/view.php?id=5515
Т	

Learning outcomes assessment system

The University uses a 100-point cumulative system for assessing the learning outcomes of higher education students.

The current control is carried out during lectures, practical (seminar) classes and is aimed at checking the level of readiness of the higher education student to perform a specific job and is assessed by the amount of points scored.

The final control includes semester control, which is conducted in the form of an exam.

The maximum possible number of points for the current control during the semester for the discipline is 60, the exam - 40 points. The minimum possible number of points is 60.

Current control includes the following control activities: completion of team projects on topics, preparation of current control papers; presentations on topics and writing essays.

More detailed information on the system of assessment and accumulation of points in the discipline is provided in the curriculum (technological map) for the discipline.

Policies of the discipline

The teaching of the discipline is based on the principles of academic integrity. Violations of academic integrity include: academic plagiarism, fabrication, falsification, cheating, deception, bribery, biased assessment. For violations of academic integrity, students are held to the following academic responsibility: re-assessment of the relevant type of academic work

More detailed information on competences, learning outcomes, teaching methods, forms of assessment, independent work is provided in the Work Programme of the discipline